Class Specific Object Recognition using Kernel Gibbs Distributions
نویسندگان
چکیده
منابع مشابه
Class Specific Object Recognition using Kernel Gibbs Distributions
Feature selection is crucial for effective object recognition. The subject has been vastly investigated in the literature, with approaches spanning from heuristic choices to statistical methods, to integration of multiple cues. For all these techniques the final result is a common feature representation for all the considered object classes. In this paper we take a completely different approach...
متن کاملObject Recognition based on Local Steering Kernel and SVM
The proposed method is to recognize objects based on application of Local Steering Kernels (LSK) as Descriptors to the image patches. In order to represent the local properties of the images, patch is to be extracted where the variations occur in an image. To find the interest point, Wavelet based Salient Point detector is used. Local Steering Kernel is then applied to the resultant pixels, in ...
متن کاملParallel Spatial Pyramid Match Kernel Algorithm for Object Recognition using a Cluster of Computers
This paper parallelizes the spatial pyramid match kernel (SPK) implementation. SPK is one of the most usable kernel methods, along with support vector machine classifier, with high accuracy in object recognition. MATLAB parallel computing toolbox has been used to parallelize SPK. In this implementation, MATLAB Message Passing Interface (MPI) functions and features included in the toolbox help u...
متن کاملClass-Specific Binary Correlograms for Object Recognition
This paper presents an efficient object-class recognition approach based on a new type of image descriptor: the Class-Specific Binary Correlogram (CSBC). In our representation, the image is described by a collection of CSBCs, where each one encodes the spatial distribution of class-specific features around a particular reference point. This representation is obtained by first performing an auto...
متن کاملObject Recognition Using Distributions of Edge Information
In this paper, we present a recognition method of polyhedral objects using distributions of edge information on Gaussian spheres. This method compares a distribution of edge vectors on a Gaussian sphere that is obtained from a camera image with that of 3-D object models in order to recognize the category of objects and to determine their orientations. The matching procedure has three steps. The...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: ELCVIA Electronic Letters on Computer Vision and Image Analysis
سال: 2008
ISSN: 1577-5097
DOI: 10.5565/rev/elcvia.221